Gillies, George
User ID:
|||||||||||
Article

Peetereso ofolex. Library Doot: Engineering Aadrases Mech. Eng. 105D Proturt Latay PHYS

Status: Faculty
Email Address: gtg@virginia.edu VIRGO:

Copyright Information:
NOTICE: This material may be protected by copyright law (Title 17, United States Code)

Policy:
12/13/2018 11:10:33 AM (cdh2n) Item ID: X002409301

Date Needed: 03/13/2019

Email Address: gtg@virginia.edu

George Gillies

Pick up Library: PHYS

тะ: 1821943 |||||||||||||||||||||||||||||||||||
Article
call. QC1 .A56 ser. 2 v. 9
1964 X002409301
Location:IVY BY-REQUEST
BookJournal The:
Bulletin of the American Physical Society

Book Author:

Other Info:
Volume: 9

Year: 1964
Pages: 64
Aricle Author: J. W. Beams
Aricle Title: Some experiments with magnetically suspended rotors

Desai and Newton ${ }^{1}$ and Gribov and Pomeranchuk, ${ }^{2}$ have been calculated for a square-well potential. For both repulsive and ttractive potentials, the poles approaching $l=-\frac{1}{2}$ as $E \rightarrow 0^{+}$,
$n>0$, are found to move towards infinity in the first quadrant as $E \rightarrow \infty$. The poles approaching $l=-\frac{1}{2}$ from the third quadrant as $E \rightarrow 0^{+}, n<0$, are found to move towards infinity as $E \rightarrow \infty$ in either the first or third quadrant. Curves are
shown to illustrate this behavior. Some generalizations of these poles are presented.

1. B. N. Desai and R. G. Newton, Phys. Rev. 129,1445 (1963).
2 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters 9,238 (1962).

FD11. Relativistic Regge Trajectories with Spins. Max Luming, University of California, La Jolla.-The relativistic Nor equation is applied to the calculation of Regge trajec-
tories for the scattering of two equal-mass, spin $-1 / 2$ particles. It is shown explicitly that there is no fixed pole in the angular momentum plane for both the singlet and triplet amplitudes For the triplet amplitudes, the kinematical singularities in the energy-squared plane is examined in detail. A set of amplitudes is constructed that is free of kinematic singularities and exact N/D solution is obtained and the trajectory and residue of Regge poles are calculated.

FD12. High-Energy Scattering in the Regge-Pole Plus Cut Model.* I. R. Gatland (introduced by L. Gold) and J. W. Moffat, Research Institute for Advanced Studies. -The nknown functions $\alpha(t), f_{i}(t)$, and $h(t)$ in the pole plus cut theory of high-energy scattering, ${ }^{\text {, }}$ which gives
$d \sigma_{i} / d t=\mid f_{i}(t)\left[w^{-8 / 2}+\left.\alpha(t) h(t) \exp \{(\alpha(t)-1) w\}\right|^{3}\right.$
where $w=\ln \left(s / 2 M_{1} M_{2}\right)$, are written in terms of Omnes-type cut is dominated by a single pole, we obtain a fit to the ex-

Friday Morning, 24 January 1964
Statler-Hilton Grand Ballroom at 9.15

(P. EWALD presiding)

General-Interest Session II
G1. Some Experiments with Magnetically Suspended Rotors. J. W. Beams, University of Virginia (45 min .)
G2. Early Days of Solid-State Theory. P. Debye, Cornell University. (45 min .)
G3. Some Unusual Properties of Microcrystals in Glass. S. D. Stookey, Corning Glass Works (45 min .)

Friday Morning, 24 January 1964
Statler-Hilton Terrace Room at 9:15
(R. Hofstadter presiding)

High-Energy Scattering and the Inferences Therefrom

GA1. High-Momentum-Transfer Proton-Proton Elastic Scattering at the Brookhaven AlternatingGradient Synchrotron. Jay Orear, Cornell University. (40 min .)
GA2. High-Energy Proton-Proton Scattering. Robert Serber, Columbia University. (40 min .)
GA3. Structure of the Triton, the Helium ${ }^{3}$ Nucleus, and the Neutron from Electron Scattering. L. I Schirf, Stanford University. (40 min .)
perimental results on $\pi+p, K+p$, and $p+p$ scattering 3 and parameters.

* Work supported in part by the U. S. Air Force Ofice of Scientific Research

1. R. Gattand and J. W. Moffat, Phys. Rev. 132, 442 (1963). 2. R. Omnes, Nuovo Cimento fotat Phys. Rev. 132, 442 (1963).
2 S. J. Lindenbaum, Intern. Conf. on Nucte FD13. Singularity Structure of Asymptotic Quantum-Field
Theory. J. C. StoDDART (introduced by F. Rohrlich), Syracuse Theory. J. C. STODDART (introduced by F. Rohrlich), Syracuse lation of quantum-field theory can be extended to produce finite solutions for the S-matrix elements to all orders in perturbation theory. ${ }^{1}$ In this paper, these solutions for the scattering of an arbitrary number of scalar bosons are ex-
amined in momentum space and their singularity structure found. It is shown that the fundamental integral equation proposed in Ref. 1 must be solved with the particle moment off the mass shell and that the solution so obtained is the analytic continuation of the unitarity condition to unphysical off-mass shell regions. The analytic-mass shell amplitudes are tion. By an induction method, it is shown that the perturbation solutions in any order possess only the singularities that are required by unitarity, from which follows that the Mandelstam representation is valid for the special case of the four-line vertex.
R. Pugh, Ann. Phys. 23, 335 (1963)

FD14. Gravitational Scattering and Regge Poles. W. K. R. Watson and Ed Dalton, University of California, Riverside. -The behavior of gravitational-scattering cross sections at theory. Comments are made on the applicability of recent theorems based on unitarity, and a possible Regge behavior of gravitational interactions is discussed.

(C. G. B. Garrett presiding)

Masers I

GB1. Optical-Maser Action up to 57.355 u in Neon. C. K. N.
Patel, W. L. Faust, R. A. McFarlane, and C. G. B. Patel, W. L. Faust, R. A. McFarlane, and C. G. B.
Garrett, Bell Telephone Laboratories.-We have obtained optical-maser action at 31.928, 34.679, 35.602, 37.231, 41.741, $53.486,54.019,54.116$, and 57.355μ in a discharge containing either pure neon or helium and neon. All of the maser wave lengths, except the $31.928-, 34.679-$, and $41.741-\mu$ lines belong to the $7 p-6 d$ group of transitions (Racah notation) of neon The 31.928-, $34.679,-$ and $41.341-\mu$ lines belong to the $6 p-5 d$ group, other transitions of which have already been reported
in maser oscillation. ${ }^{1}$ The strongest transition in the $7 p-6 d$ group is the $53.486-\mu$ line and the output power is estimated to be of the order of a microwatt. The far-IR detectors used were a Golay cell and a low-temperature germanium bolometer. We describe the experimental technique and discuss the results and excitation mechanisms.
2W. L. Faust, R. A. McFarlane, C. K. N. Patel, and C. G. B. Garrett, Bull.
Am. Phys. Soc. 8, $299(1963)$.
GB2. Line Shapes of the $1.15-\boldsymbol{u}$ Ne Transition.* A. Szöre \dagger MIT.-Subsequent to an earlier work, ${ }^{1}$ the power output of a He-Ne ${ }^{22}$ optical maser oscillating at 1.15μ has been measured a function of its frequency, for vatious gas pressures be-
tween 0.5 and 1.5 mm Hg and two different $\mathrm{He}-\mathrm{Ne}$ ratios $10: 1,5: 1$. We find that pressure-broadening of the atomic spectral line is caused by collisions of excited Ne atoms with
ground-state Ne and He atoms, each gas having approximately the same net effect at the operating pressures of the maser. Furthermore, we find that pressure introduces an asymmetry in the atomic line shape to the extent of $1 / 10$ th of the linewidth. Accompanying this asymmetry is a shift to higher frequencies, which is estimated indirectly to be of the same order of magnitude. Lamb's theory of the gas maser has
been adapted to include asymmetric line shapes. The theory has been fitted to the experimental curves with the aid of a digital computer to obtain the above parameters characteristic of the line shape.
Work supported by the National Aeronautics and Space Administration
and done partly at the Computation Center, MIT. (1963).

GB3. Hanle Effect in the He-He Laser.* W. Culshaw and J. Kannelaud, Lockheed Research Laboratories.-Zeeman mvestigations on the $1.153-\mu$ ine of a planar He-Ne laser show
that the usual polarizations, such as circular for an axial magnetic field, are obtained provided the eigenstates do not overlap within their natural linewidths. At lower values of occur due to the additional coherence imparted by the overlapping states. The effect is discussed, using time-dependent perturbation theory, and a solution valid for a small initial perturbation is obtained. This shows that when the cavity resonance is centered on the Doppler distribution the that geH/mc<1/ , and that the electric vector rotates with increasing magnetic field. For an asymmetrical position of the resonance, elliptical polarization is predicted. When the decay constant of the lower level is assumed zero, the results are analogous to the classical expressions for the depolarization of resonance radiation. Some experimental verification is pro-
of the laser and by investigations on low-frequency beat phenomena.
*Research supported by the Independent Research Program of Lockheed
Missiles $\&$ Space Company.
GB4. Hanle Effect of the $1470-\AA$ Xe Resonance Line. D. anderson and W. Lichten, The University of Chicago.-Th ero-field level crossing (Hanle Effect) was measured by a resonance-fluorescence technique with a natural mixture of Xe isotopes. Light from a Xe resonance lamp entered an absorperved in a direction perpendicular to the incoming light beam, with the absorption cell located in a uniform magnetic field perpendicular to the plane containing the incoming and outgoing beams. Coherence-narrowing of the Lorentz line wa observed. An extrapolation to zero pressure gave a full halfwidth of $40 \pm 4 \mathrm{G}$. Use of the optical value ${ }^{1} g_{J}=1.204$ gave
lifetime of $3.0 \pm 1.0 \times 10^{-9} \mathrm{sec}$ for the $5 p^{6} 6 s^{3} P_{1}$ state of Xe, or an oscillator strength of $0.32_{-0.08}+0.17$. Use of the formulas giving the oscillator strengths for the $p^{5} s$ configuration ${ }^{2}$ gave the ratio of ${ }^{1} f /{ }^{3} f=0.9$, or $0.61_{-0.15^{+0.30}}$ for the total oscillator trength of the transition to the $5 p^{5} 6 s$ configuration from the round state. The main uncertainty in the lifetime is from th effect of hyperfine structure of the odd isotopes.
J. B. Green. E. H. Hurlburt, and D. W. Bowman. Phys. Rev. 59,72 (1941),
R. Knox. Phys. Rev. 110 , 375 (1958).

GB5. Microwave Oscillation Locked to O-O Hyperfine Transition, Using a Rubidium 87 Maser Amplifier. M. Arditi TT Federal Laboratories, AND T. R. CARVER, Princeto Universiy.-Maser amplification in an optically pumped ustained oscillations have not been reported With such rubidium maser amplifier we report self-sustained oscillation t microwave frequency, using some additional gain introduce by a parametric amplifier to overcome insertion and coupling losses. The gas cell is enclosed in a microwave-transmission Mc/sec. The gain of the parametric amplifier ifitier at 683 uch a manner that a gain greater than unity, from input of cavity to output of parametric amplifier, is obtained only whe optical pumping is produced. When the output of the para metric amplifier is connected, in proper phase, to the input of he transmission cavity, it is possible to obtain a microwav oscillation that is locked to the relatively stable frequency of
the O-O hyperfine transition. A continuous microwave oscillation has been obtained when using a continuous-pumpin light. The use of pulsed light, for optical pumping, permits the tudy of the oscillation buildup under various experimental onditions.
N. Knable, Bull. Am, Phys. Soc. 6,68 (1961).

GB6. High-Power Ultraviolet Gas Laser. Harry G. Heard Energy Systems, Inc.-Observation of laser action in the transitions $C^{3} \pi \rightarrow B^{3} \pi$ in nitrogen. The peak-power output summed over all the lines in the second positive group of this band system is of the order of 10 W . The specific gain is approximately $60 \mathrm{~dB} / \mathrm{m}$ at 4 Torr. Band-spectra emission is ob served over the frequency spectrum extending from 3000 to .

bulletin
 OF THE AMERICAN PHYSICAL SOCIETY

including the programme of the 1964 ANNUAL MEETING AT NEW YORK 22-25 JANUARY 1964

BULLETIN

THE AMERICAN PHYSICAL SOCIETY

The Bulletin of The American Physical Society is published seven times a year, once in January, once in February, once in March, once in April, once in June, once in October, and once in December, at Prince and Lemon Streets, Lancaster Pennsylvania. Correspondence should be addressed to The American Physical Society, Columbia University, New York, N. Y. 10027.

Subscription price: $\$ 5$ per year
Back-number prices: $\$ 4$ for the triennial Membership List, $\$ 1$ for other issues

CONCERNING "ABSTRACTS"
Many people have the not unreasonable idea that the "abstracts" in this Bulletin are abstracts of written texts of which we have the originals. This is not the case. These are the abstracts of speeches that are to be given at the meeting in question. We have no texts, and those who wish more information than an abstract contains must appeal to its author. Every member of the Society has the right to give ten-minute papers before its meetings.

Changes of address: Allow at least six weeks' advance notice, Send both old and new addresses to the Circulation Department, American Institute of Physics, 335 East 45 Street, New York, N. Y 10017. If posibe pese incluce an address tencil from the mailing envelope of a recent issue

Second-class postage paid at Laneaster, Pa.

TABLE OF CONTENTS

PAGE Preamble... 2

Epitome. 6
Main Text. 8
Index. 117

Awards of the 1964 Oliver E. Buckley Solid-State Physics Prize and of the 1964 American Physical Society High-Polymer Physics Prize Sponsored by the Ford Motor Company.

Announcements of Meetings in the Near Future
1964 Southwestern Meeting at Tucson.124
1964 "March" Meeting at Philadelphia. 124
1964 Spring Meeting of the New York State Section 125
1964 Spring Meeting at Washington.. 125
Announcements of Topical Conferences
Semimetals (New York) 125
Nuclear Spectroscopy with Direct Reactions (Chicago). 125
Exploding-Wire Phenomenon (Boston). 126
Correlations of Particles Emitted in Nuclear Reactions (Gatlinburg) 126
Invitation to Name Candidates for the 1964 Heineman Prize. 126
Rules and Instructions for the Preparation of Abstracts. 127
Calendar of Meetings and Deadlines through December 1964 129
Hotel and Information Forms
Annual Meeting : New York 131
Southwestern Meeting: Tucson. 133
"March" Meeting : Philadelphia 135

